Explanation
Step 1
set the equations:
Let x represents the cost of 1 pen
Let y represents the cost of 1 copybook
Let z represents the cost of 1 ruler
so
a)2 pens and 1 copybook cost $16.50
[tex]2x+1y=16.50\rightarrow equation(1)[/tex]b)4 pens and 5 copybooks cost $52.50
[tex]4x+5y=52.50\rightarrow equation(2)[/tex]c) 2 copy books and 3 rulers and paid $41
[tex]\begin{gathered} 2y+3z=41 \\ \text{isolate z value} \\ 3z=41-2y \\ z=\frac{41-2y}{3}\rightarrow equation(3) \end{gathered}[/tex]Step 2
solve the equations:
[tex]\begin{gathered} 2x+1y=16.50\rightarrow equation(1) \\ 4x+5y=52.50\rightarrow equation(2) \\ z=\frac{41-2y}{3}\rightarrow equation(3) \end{gathered}[/tex]a) isolate the x value in equation (1) and (2) then set equal each other,
[tex]\begin{gathered} 2x+1y=16.50\rightarrow equation(1) \\ 2x=16.50-y \\ x=\frac{16.50-y}{2} \end{gathered}[/tex]and
[tex]\begin{gathered} 4x+5y=52.50\rightarrow equation(2) \\ 4x=52.50-5y \\ x=\frac{52.50-5y}{4} \end{gathered}[/tex]so
[tex]undefined[/tex]c