How do I solve this problem? Prove Identities or simplify using sum and difference formula.

One of the trigonometric identities is :
[tex]\sin (A+B)=\sin A\cos B+\cos A\sin B[/tex]From the problem, we have :
[tex]\sin (\frac{3\pi}{2}+x)[/tex]Applying the identity above,
[tex]\sin (\frac{3\pi}{2}+x)=\sin \frac{3\pi}{2}\cos x+\cos \frac{3\pi}{2}\sin x[/tex]Note that :
[tex]\begin{gathered} \sin \frac{3\pi}{2}=-1 \\ \text{and} \\ \cos \frac{3\pi}{2}=0 \end{gathered}[/tex]The identity will be :
[tex]\begin{gathered} \sin \frac{3\pi}{2}\cos x+\cos \frac{3\pi}{2}\sin x \\ \Rightarrow(-1)(\cos x)+(0)(\sin x) \\ \Rightarrow-\cos x \end{gathered}[/tex]The answer is -cos x