Respuesta :

One of the trigonometric identities is :

[tex]\sin (A+B)=\sin A\cos B+\cos A\sin B[/tex]

From the problem, we have :

[tex]\sin (\frac{3\pi}{2}+x)[/tex]

Applying the identity above,

[tex]\sin (\frac{3\pi}{2}+x)=\sin \frac{3\pi}{2}\cos x+\cos \frac{3\pi}{2}\sin x[/tex]

Note that :

[tex]\begin{gathered} \sin \frac{3\pi}{2}=-1 \\ \text{and} \\ \cos \frac{3\pi}{2}=0 \end{gathered}[/tex]

The identity will be :

[tex]\begin{gathered} \sin \frac{3\pi}{2}\cos x+\cos \frac{3\pi}{2}\sin x \\ \Rightarrow(-1)(\cos x)+(0)(\sin x) \\ \Rightarrow-\cos x \end{gathered}[/tex]

The answer is -cos x

RELAXING NOICE
Relax