Emmanuel invests $3600 and Kelsey invests $2400. Both investments eam 3.8%annual interest. How much longer will it take Kelsey's investment to reach $10,000than Emmanuel's investment?

Respuesta :

EXPLANATION

We can build the following equations in order to represent the Emmanuel earnings:

[tex]y_1=3600(1+0.038)^x[/tex][tex]y_2=10000[/tex]

Matching both expressions:

[tex]10000=3,600(1+0.038)^x[/tex][tex]\mathrm{Switch\: sides}[/tex][tex]3600\mleft(1+0.038\mright)^x=10000[/tex][tex]\mathrm{Divide\: both\: sides\: by\: }3600[/tex][tex]\frac{3600\left(1+0.038\right)^x}{3600}=\frac{10000}{3600}[/tex][tex]\mathrm{Simplify}[/tex][tex]\mleft(1+0.038\mright)^x=\frac{25}{9}[/tex][tex]\mathrm{If\: }f\mleft(x\mright)=g\mleft(x\mright)\mathrm{,\: then\: }\ln \mleft(f\mleft(x\mright)\mright)=\ln \mleft(g\mleft(x\mright)\mright)[/tex][tex]\ln \mleft(\mleft(1+0.038\mright)^x\mright)=\ln \mleft(\frac{25}{9}\mright)[/tex][tex]\ln \mleft(\mleft(1+0.038\mright)^x\mright)=x\ln \mleft(1+0.038\mright)[/tex][tex]x\ln \mleft(1+0.038\mright)=\ln \mleft(\frac{25}{9}\mright)[/tex][tex]\mathrm{Divide\: both\: sides\: by\: }\ln \mleft(1.038\mright)[/tex][tex]\frac{x\ln\left(1+0.038\right)}{\ln\left(1.038\right)}=\frac{\ln\left(\frac{25}{9}\right)}{\ln\left(1.038\right)}[/tex]

Simplify:

[tex]x=\frac{\ln\left(\frac{25}{9}\right)}{\ln\left(1.038\right)}[/tex]

In decimal form, this is equivalent to 27.39 years.

Now, applying the same reasoning to the Kelsey investment:

[tex]y_1=2400(1+0.038)^x[/tex][tex]y_2=10000[/tex]

Matching both expressions:

[tex]10000=2400(1+0.038)^x[/tex][tex]Switch\: sides[/tex][tex]2400\mleft(1+0.038\mright)^x=10000[/tex][tex]\mathrm{Divide\: both\: sides\: by\: }2400[/tex][tex]\frac{2400\left(1+0.038\right)^x}{2400}=\frac{10000}{2400}[/tex][tex]\mathrm{Simplify}[/tex][tex]\mleft(1+0.038\mright)^x=\frac{25}{6}[/tex]

Applying the exponent rule:

[tex]\mathrm{If\: }f\mleft(x\mright)=g\mleft(x\mright)\mathrm{,\: then\: }\ln \mleft(f\mleft(x\mright)\mright)=\ln \mleft(g\mleft(x\mright)\mright)[/tex][tex]\ln \mleft(\mleft(1+0.038\mright)^x\mright)=\ln \mleft(\frac{25}{6}\mright)[/tex]

Apply log rule:

[tex]\ln \mleft(\mleft(1+0.038\mright)^x\mright)=x\ln \mleft(1+0.038\mright)[/tex][tex]x\ln \mleft(1+0.038\mright)=\ln \mleft(\frac{25}{6}\mright)[/tex][tex]\mathrm{Divide\: both\: sides\: by\: }\ln \mleft(1.038\mright)[/tex][tex]\frac{x\ln\left(1+0.038\right)}{\ln\left(1.038\right)}=\frac{\ln\left(\frac{25}{6}\right)}{\ln\left(1.038\right)}[/tex]

Simplify:

[tex]x=\frac{\ln\left(\frac{25}{6}\right)}{\ln\left(1.038\right)}[/tex]

Expressing in decimal form:

[tex]x=38.26[/tex]

This is equivalent to 38.26 years to reach 10000 to the Kesley investment.

Comparing both investments:

Kesley Investment - Emmanuel Investment =

= 38.26 - 27.39 = 10.87

In conclusion, It will take 10.87 more years for Kelsey to reach $10,000

ACCESS MORE
EDU ACCESS
Universidad de Mexico