find the rate of change of the radius of a sphere at the point in time when the radius is 6ft if the volume is increasing at the rate of 8 pie cubic feet per second.

Respuesta :

Answer:

Explanation:

The volume of a sphere is given by

[tex]V=\frac{4}{3}\pi r^3[/tex]

taking the derivative of both sides gives

[tex]\frac{dV}{dt}=\frac{d(\frac{4}{3}\pi r^3)}{dt}[/tex]

[tex]\frac{dV}{dt}=\frac{4}{3}\pi\frac{d(r^3)}{dt}[/tex]

using the product rule gives

[tex]\frac{d(r^3)}{dt}=r^2\frac{dr}{dt}+r\frac{dr^2}{dt}[/tex][tex]=r^2\frac{dr}{dt}+2r^2\frac{dr}{dt}[/tex][tex]=3r^2\frac{dr}{dt}[/tex]

Thus, the rate of change of volume is

[tex]\frac{dV}{dt}=4\pi r^2\frac{dr}{dt}[/tex]

Now we know that at a certain time, r = 6 ft and dV/dt = 8; therefore,

[tex]undefined[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico