Answer:
Explanation:
The volume of a sphere is given by
[tex]V=\frac{4}{3}\pi r^3[/tex]taking the derivative of both sides gives
[tex]\frac{dV}{dt}=\frac{d(\frac{4}{3}\pi r^3)}{dt}[/tex][tex]\frac{dV}{dt}=\frac{4}{3}\pi\frac{d(r^3)}{dt}[/tex]using the product rule gives
[tex]\frac{d(r^3)}{dt}=r^2\frac{dr}{dt}+r\frac{dr^2}{dt}[/tex][tex]=r^2\frac{dr}{dt}+2r^2\frac{dr}{dt}[/tex][tex]=3r^2\frac{dr}{dt}[/tex]Thus, the rate of change of volume is
[tex]\frac{dV}{dt}=4\pi r^2\frac{dr}{dt}[/tex]Now we know that at a certain time, r = 6 ft and dV/dt = 8; therefore,
[tex]undefined[/tex]