Respuesta :

To solve the equation:

[tex]-2x^2-16x-44=0[/tex]

we use the general formula:

[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]

In the equation given we have that a=-2, b=-16 and c=-44. Plugging the values in the general equation we have:

[tex]\begin{gathered} x=\frac{-(-16)\pm\sqrt[]{(-16)^2-4(-2)(-44)}}{2(-2)} \\ =\frac{16\pm\sqrt[]{256-352}}{-4} \\ =\frac{-16\pm\sqrt[]{-96}}{4} \\ =\frac{-16\pm\sqrt[]{6\cdot16}i}{4} \\ =\frac{-16\pm4\sqrt[]{6}i}{4} \\ =-\frac{16}{4}\pm\frac{4}{4}\sqrt[]{6}i \\ =-4\pm\sqrt[]{6}i \end{gathered}[/tex]

Therefore the answer is the third option

RELAXING NOICE
Relax