Given:
The acceleration of the particle is,
[tex]a=-4x[/tex]The particle was in origin with velocity,
[tex]v_o=+4\text{ m/s}[/tex]To find:
a) Find velocity as a function of x
b) Maximum position of the particle
c) Position as a function of time.
Explanation:
(a)
The acceleration is,
[tex]\begin{gathered} a=\frac{dv}{dt} \\ =\frac{dv}{dx}\times\frac{dx}{dt} \\ =v\frac{dv}{dx} \end{gathered}[/tex]According to the question,
[tex]\begin{gathered} v\frac{dv}{dx}=-4x \\ vdv=-4xdx \\ \int vdv=\int-4xdx \\ \frac{v^2}{2}=-\frac{4x^2}{2}+c \end{gathered}[/tex]Here, 'c' is the integration constant.
Now, applying the condition at the origin, we can write,
[tex]\begin{gathered} \frac{(4)^2}{2}=-\frac{4\times0}{2}+c \\ \frac{16}{2}=c \\ c=8 \end{gathered}[/tex]Now, the velocity is,
[tex]\begin{gathered} \frac{v^2}{2}=-\frac{4x^2}{2}+8 \\ v^2=-4x^2+16 \\ v=\sqrt{16-4x^2} \end{gathered}[/tex]Hence, the velocity as a function of x is,
[tex]v=\sqrt{16-4x^2}[/tex](b)
At the maximum position, the speed of the particle becomes zero.
So, the maximum position is,
[tex]\begin{gathered} 0=\sqrt{16-4x^2} \\ 16-4x^2=0 \\ 4x^2=16 \\ x^2=\frac{16}{4} \\ x^2=4 \\ x=\pm2 \end{gathered}[/tex]Hence, the position of the particle is,
[tex]x=\pm2\text{ m}[/tex](c)
Now, the velocity of the particle is,
[tex]\begin{gathered} v=\frac{dx}{dt}=\sqrt{16-4x^2} \\ dx=\sqrt{16-4x^2}dt \\ \frac{dx}{\sqrt{16-4x^2}}=dt \\ \int\frac{dx}{\sqrt{16-4x^2}}=\int dt \\ \frac{1}{2}sin^{-1}(\frac{x}{2})+k=t \end{gathered}[/tex]Here, 'k' is the integration constant.
Hence, the position as a function of time is,
[tex]\frac{1}{2}sin^{-1}(\frac{x}{2})+k=t[/tex]