Identify the vertices, foci and equations for the asymptotes of the hyperbola below. Type coordinates with parentheses and separated by a comma like this (x,y). If a value is a non-integer then type is a decimal rounded to the nearest hundredth. -4x^2+24x+16y^2-128y+156=0 The center is the point :

Identify the vertices foci and equations for the asymptotes of the hyperbola below Type coordinates with parentheses and separated by a comma like this xy If a class=

Respuesta :

ANSWER:

The center is:

[tex](3,4)[/tex]

Vertex with larger y-value:

[tex](3,6)[/tex]

Vertex with smaller y-value:

[tex](3,2)[/tex]

Foci with larger y-value:

[tex](3,8)[/tex]

Foci with smaller y-value:

[tex](3,0)[/tex]

Equation of an asymptote:

[tex]y=0.5(x-3)+4[/tex]

Where

[tex]\begin{gathered} a=0.5 \\ b=3 \\ c=4 \end{gathered}[/tex]

EXPLANATION:

We have to take this equation into the general form of an hyperbola:

[tex]\frac{(x-h)^2}{b^2}-\frac{(y-k)^2}{a^2}=1[/tex]

Where (h,k) is the center of the hyperbola.

We also know the vertices are:

[tex]\begin{gathered} (h,k+b) \\ (h,k-b) \end{gathered}[/tex]

The foci are:

[tex]\begin{gathered} (h,k+2b) \\ (h,k-2b) \end{gathered}[/tex]

And that the asymptotes are given by the expression:

[tex]y=\pm\frac{b}{a}(x-h)+k[/tex]

Let's manipulate the equation:

[tex]\begin{gathered} -4x^2+24x+16y^2-128y+156=0 \\ \rightarrow16y^2-128y-4x^2+24x+156=0 \\ \rightarrow(16y^2-128y-4x^2+24x+156)\div4=0\div4 \\ \rightarrow4y^2-32y-x^2+6x+39=0 \\ \rightarrow4(y-4)^2-64-(x-3)^2+9+39=0 \\ \rightarrow4(y-4)^2-(x-3)^2-16=0 \\ \rightarrow4(y-4)^2-(x-3)^2=16 \\ \\ \rightarrow\frac{\mleft(y-4\mright)^{}_{}^2}{4}-\frac{(x-3)^2}{16}=1 \\ \\ \Rightarrow\frac{(y-4)^2_{}}{2^2}-\frac{(x-3)^2}{4^2}=1 \end{gathered}[/tex]

From this general equation, we can conclude that the center is:

[tex](3.4)[/tex]

Now, the vertices are:

[tex]\begin{gathered} (3,4+2)\rightarrow(3,6) \\ (3,4-2)\rightarrow(3,2) \end{gathered}[/tex]

The foci are:

[tex]\begin{gathered} (3,4+4)\rightarrow(3,8) \\ (3,4-4)\rightarrow(3,0) \end{gathered}[/tex]

And the equation of the asympotes are:

[tex]\begin{gathered} y=\pm\frac{2}{4}(x-3)+4 \\ \\ \rightarrow y=\pm\frac{1}{2}(x-3)+4 \end{gathered}[/tex]

One of this asymptotes is:

[tex]y=\frac{1}{2}(x-3)+4[/tex]

RELAXING NOICE
Relax