We are given the following equation:
[tex]6x^2+6x+3=0[/tex]This is an equation of the form:
[tex]ax^2+bx+c=0[/tex]The discriminant of the equation is:
[tex]d=b^2-4ac[/tex]We have 3 possible cases:
[tex]d<0[/tex]There are two imaginary solutions
[tex]d=0[/tex]one real solution
[tex]d>0[/tex]Two real solutions.
Replacing the values:
[tex]d=(6)^2-4(6)(3)[/tex]Solving the operations:
[tex]\begin{gathered} d=36-72 \\ d=-36 \end{gathered}[/tex]We have:
[tex]d<0[/tex]This means that we have 2 imaginary solutions.