Answer:
[tex]\begin{gathered} h=0 \\ k=6 \\ x=1 \\ y=9 \end{gathered}[/tex]the vertex form of the equation can be written as;
[tex]f(x)=3(x-0)^2+6[/tex]The standard form of the quadratic equation is;
[tex]f(x)=3x^2+6[/tex]Explanation:
Given that the vertex is (0,6);
[tex]\begin{gathered} (h,k)=(0,6) \\ h=0 \\ k=6 \end{gathered}[/tex]And passes through the point (-1,9);
[tex]\begin{gathered} (x,y)=(1,9) \\ x=1 \\ y=9 \end{gathered}[/tex]Recall that the vertex form of a quadratic equation can be written as;
[tex]y=a(x-h)^2+k[/tex]To get the value of a, let us substitute the given values;
[tex]\begin{gathered} y=a\mleft(x-h\mright)^2+k \\ 9=a\mleft(1-0\mright)^2+6 \\ 9=a+6 \\ 9-6=a \\ a=3 \end{gathered}[/tex]Therefore, the vertex form of the equation can be written as;
[tex]\begin{gathered} f(x)=a(x-h)^2+k \\ f(x)=3(x-0)^2+6 \end{gathered}[/tex]The standard form of the quadratic equation is;
[tex]\begin{gathered} f(x)=3(x-0)^2+6 \\ f(x)=3x^2+6 \end{gathered}[/tex]