Respuesta :

Given the expression

[tex]f(x)=4x^2-8[/tex]

Then

[tex]f(x+h)=4(x+h)^2-8[/tex]

The next step is to substitute the values into the expression

[tex]\frac{f(x+h)-f(x)}{h}=\frac{4(x+h)^2-8-(4x^2-8)}{h}[/tex]

=>

[tex]\frac{4x^2+8xh+h^2-8-4x^2+8}{h}=\frac{h^2+8xh}{h}[/tex]

=>

[tex]\frac{h(h+8x)}{h}[/tex]

=>

[tex]\begin{gathered} h+8x \\ If\text{ we take the limit as h tends to 0} \\ \Rightarrow0+8x \\ \\ \Rightarrow8x \end{gathered}[/tex]

Answer = 8x

RELAXING NOICE
Relax