Respuesta :

Answer:

[tex]a^3+b^3=0[/tex]Explanation:

The given expression is:

[tex]a^3+b^3[/tex]

This can be expressed as:

[tex]a^3+b^3=(a+b)(a^2-ab+b^2)[/tex]

This can also be written as:

[tex]a^3+b^3=(a+b)(a^2b_{}+b^2-ab)[/tex]

Since a² + b² = ab:

a² + b² - ab = 0

Therefore:

[tex]\begin{gathered} a^3+b^3=(a+b)(0) \\ a^3+b^3=0 \end{gathered}[/tex]

The value of a³ + b³ if a² + b² = ab = 4 is 0

RELAXING NOICE
Relax