what is the polar form of the parametric equations x=4t and y=t^2

Answer:
Given that,
The parametric equations x=4t and y=t^2
To find the polar form of the parametric equations
Explanation:
we know that,
The polar form of the equation is expressed in terms of r and theta,
The conversion of Cartesian co-ordinate to Polar co-ordinate is given by,
[tex]\begin{gathered} r^2=x^2+y^2 \\ \\ \tan\theta=\frac{y}{x} \end{gathered}[/tex]Using this we get,
[tex]r^2=(4t)^2+(t^2)^2[/tex][tex]r^2=16t^2+t^4[/tex][tex]r=\sqrt{16t^2+t^4}[/tex]we have that,
[tex]\tan\theta=\frac{t}{4}[/tex][tex]t=4\tan\theta[/tex]Substitute this we get,
[tex]r=\sqrt{16t^2+t^4}[/tex][tex]undefined[/tex]