Recall
f(x)=y
Given
f(2)= 21 and f(-4) = -15
f(x) =
Step 1
[tex]\begin{gathered} y=mx+b \\ \text{when} \\ f(2)=21_{} \\ 21=2m+b\ldots\text{Equation (i)} \end{gathered}[/tex][tex]\begin{gathered} y=mx+b \\ \text{when } \\ f(-4)=-15 \\ -15=-4m+b\ldots\text{Equation (i}i) \end{gathered}[/tex]Step 2
Let's solve equation (i) and Equation (ii) simultaneously
[tex]\begin{gathered} 21=2m+b\ldots(i) \\ -15=-4m+b\ldots(ii) \\ In\text{ equation (i) Let's make b the subject} \\ b=21-2m \end{gathered}[/tex][tex]\begin{gathered} we\text{ now substitute in equation (i}i) \\ -15=-4m+21-2m \\ \text{collect the like terms} \\ -15-21=-4m-2m \\ -36=-6m \\ \text{Divide both sides by -6} \\ -\frac{36}{6}=-\frac{6m}{-6} \\ \\ m=6 \end{gathered}[/tex]Step 3
[tex]We\text{ can substitute for m either in equation(i) or (i}i)[/tex]using Equation (ii)
[tex]\begin{gathered} -15m=-4m+b \\ -15=-4(6)+b \\ \text{collect the like terms} \\ -15=-24+b \\ \text{collect the like terms} \\ -15+24=b \\ b=9 \end{gathered}[/tex]Step 4
M= 6 and b= 9
[tex]\begin{gathered} We\text{ can substitute into y=mx+b} \\ y=6x+9 \end{gathered}[/tex]The linear equation is
[tex]y=6x+9[/tex]