1) find the probability the arrow will land on a multiple of 4 or 6 or both

Write out the number of elements in the sample space as we denote the sample space as S
[tex]n(S)=36[/tex]Write out the event space E1 for the multiples of 4
[tex]\begin{gathered} E_1=\mleft\lbrace4,8,12,16,20,24,28,32,36\mright\rbrace \\ n(E_1)=9 \end{gathered}[/tex]Write out the event space E2 for the multiples of 6
[tex]\begin{gathered} E_2=\mleft\lbrace6,12,18,24,30,36\mright\rbrace \\ n(S)=6 \end{gathered}[/tex]The probability that the arrow will land on a multiple of 4 or 6 or both will land can be represented thus
[tex]P(E_1)+P(E_2)+P(E_1\cap E_2)[/tex][tex]\begin{gathered} E_1\cap E_2=\mleft\lbrace12,24,36\mright\rbrace \\ n(E_1\cap E_2)=3 \end{gathered}[/tex][tex]P(E_1)=\frac{n(E_1)}{n(S)}=\frac{9}{36}=\frac{1}{4}[/tex][tex]P(E_2)=\frac{n(E_2)}{n(S)}=\frac{6}{36}=\frac{1}{6}[/tex][tex]P(E_1\cap E_2)=\frac{n(E_1\cap E_2)}{n(S)}=\frac{3}{36}=\frac{1}{12}[/tex]Therefore,
[tex]P(E_1)+P(E_2)+P(E_1\cap E_2)=\frac{1}{4}+\frac{1}{6}+\frac{1}{12}=\frac{3+2+1}{12}=\frac{6}{12}=\frac{1}{2}[/tex]Hence, the probability that the arrow will land on a multiple of 4or 6 or both is 1/2