an angle a in standard position has a terminal side which passes through the point (-5,8)

STEP - BY - STEP EXPLANATION
What to find?
• sin(α)
,• cos(α)
,• tan(α)
,• cot(α)
,• sec(α)
,• csc(α)
GIVEN:
Step 1
Make a sketch.
Step 2
Determine the hypotenuse side.
Using the Pythagoras theorem;
[tex]hypotenuse^2=adjacent^2+opposite^2[/tex][tex]\begin{gathered} hypotenuse=\sqrt{5^2+8^2} \\ \\ =\sqrt{25+64} \\ \\ =\sqrt{89} \end{gathered}[/tex]Step 3
Determine the identities.
We know that;
opposite =8
adjacent=5
hypotenuse = √89
[tex]\begin{gathered} sin(\alpha)=\frac{opposite}{hypotenuse} \\ \\ =\frac{8}{\sqrt{89}} \\ \\ =\frac{8\sqrt{89}}{89} \end{gathered}[/tex]Since sine is positive in the second quadrant, then we leave the answer as it is.
Hence;
[tex]sin(\alpha)=\frac{8\sqrt{89}}{89}[/tex][tex]\begin{gathered} cos(\alpha)=\frac{adjacent}{hypotenuse} \\ \\ =\frac{5}{\sqrt{89}} \\ \\ =\frac{5\sqrt{89}}{89} \end{gathered}[/tex]In quadrant II, cos is negative.
Hence;
[tex]cos(\alpha)=-\frac{5\sqrt{89}}{89}[/tex][tex]\begin{gathered} tan(\alpha)=\frac{opposite}{adjacent} \\ \\ =\frac{8}{5} \end{gathered}[/tex]Tangent is negative in quadrant II.
Hence;
[tex]tan(\alpha)=-\frac{8}{5}[/tex][tex]\begin{gathered} cot(\alpha)=\frac{1}{tan\alpha} \\ \\ =\frac{1}{-\frac{8}{5}} \\ \\ =-\frac{5}{8} \end{gathered}[/tex]Hence,
[tex]cot(\alpha)=-\frac{5}{8}[/tex][tex]\begin{gathered} sec(\alpha)=\frac{1}{cos(\alpha)} \\ \\ =\frac{1}{-\frac{5}{\sqrt{89}}} \\ \\ =-\frac{\sqrt{89}}{5} \end{gathered}[/tex]Hence;
[tex]sec(\alpha)=-\frac{\sqrt{89}}{5}[/tex][tex]\begin{gathered} csc(\alpha)=\frac{1}{sin(\alpha)} \\ \\ =\frac{1}{\frac{8}{\sqrt{89}}} \\ \\ =\frac{\sqrt{89}}{8} \end{gathered}[/tex]Hence;
[tex]csc(\alpha)=\frac{\sqrt{89}}{8}[/tex]ANSWER
• sin(α) = 8√89 /89
• cos(α) = -5√89 /89
• tan(α)= - 8/5
• cot(α)= -5/8
• sec(α) = - √89 / 5
• cosec(α) =