Calculate final velocities assuming perfectly inelastic collisions.Row 7 and 8

Answer:
Row 7.
V1f = 0.1818 m/s
V2f = 0.1818 m/s
Row 8
V1f = 0.333 m/s
V2f = 0.333 m/s
Explanation:
When there is a perfectly inelastic collision, the objects stick together after the collision, so they will have the same final velocity. So, to find the missing values, we can use the following equation
[tex]\begin{gathered} p_i=p_f \\ M_1V_{1i}+M_2V_{2i}=(M_1+M_2)V_f \end{gathered}[/tex]Solving for Vf, we get:
[tex]V_f=\frac{M_1V_{1i}+M_2V_{2i}}{M_1+M_2}[/tex]Now, for row 7, we get M1 = 5 kg, V1i = 2m/s, M2 = 50kg and V2i = 0m/s, so the final velocity is
[tex]\begin{gathered} Vf=\frac{(5\operatorname{kg})(2m/s)+(50\operatorname{kg})(0m/s)}{5\operatorname{kg}+50\operatorname{kg}} \\ Vf=\frac{10\operatorname{kg}\text{ m/s}}{55\operatorname{kg}}=0.1818\text{ m/s} \end{gathered}[/tex]In the same way, for row 8, we get M1 = 10 kg, V1i = 2 m/s, M2 = 50 kg and V2i = 0 m/s, so
[tex]\begin{gathered} Vf=\frac{(10\operatorname{kg})(2m/s)+(50\operatorname{kg})(0m/s)}{10\operatorname{kg}+50\operatorname{kg}} \\ Vf=\frac{20\operatorname{kg}m/s}{60\operatorname{kg}}=0.333\text{ m/s} \end{gathered}[/tex]Therefore, the answers are:
Row 7.
V1f = 0.1818 m/s
V2f = 0.1818 m/s
Row 8
V1f = 0.333 m/s
V2f = 0.333 m/s