The product of two consecutive odd integers is 899. Find the integers.Note: Each set of brackets represents one solution.

The product of two consecutive odd integers is 899.
Let x be the first odd integer.
Then (x+2) will be the second odd integer.
Their product must be equal to 899, so we can write
[tex]x\cdot(x+2)=899[/tex]Simplify the equation
[tex]\begin{gathered} x^2+2x=899 \\ x^2+2x-899=0 \end{gathered}[/tex]This is a quadratic equation that can be solved by either factoring or using the quadratic formula.
Let's use the quadratic formula.
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]For the given case, the coefficients are
a = 1
b = 2
c = -899
[tex]\begin{gathered} x=\frac{-2\pm\sqrt[]{2^2-4(1)(-899)}}{2(1)} \\ x=\frac{-2\pm\sqrt[]{3600}}{2} \\ x=\frac{-2\pm60}{2} \\ x=\frac{-2+60}{2},\; x=\frac{-2-60}{2} \\ x=\frac{58}{2},\; x=\frac{-62}{2} \\ x=29,\; x=-31 \end{gathered}[/tex]So, the first integer is 29
The second odd integer is x + 2 = 29 + 2 = 31
Verify the results
[tex]29\times31=899[/tex]Also, -31 is the first integer.
The second integer is x + 2 = -31 + 2 = -29
Verify the results
[tex]-31\times-29=899[/tex]Therefore, the solution is
[tex]\mleft\lbrace29,31\mright\rbrace\; and\; \mleft\lbrace-31,-29\mright\rbrace[/tex]