ANSWER
[tex]B.(11,5)[/tex]EXPLANATION
We want to find L's coordinates that lie along the line between the points N(14, 4) and M(2, 8) and partitions the segment in the ratio of 1 : 3.
To do this, we have to apply the section formula:
[tex]L=(\frac{m_1x_2+m_2x_1}{m_1+m_2},\frac{m_1y_2+m_2y_1}{m_1+m_2})_{}[/tex]where m₁ : m₂ is the ratio
(x₁, y₁) and (x₂ : y₂) are the two coordinates of the points
Therefore, we have that the coordinates of L are:
[tex]\begin{gathered} L=(\frac{(1\cdot2)+(3\cdot14)}{1+3},\frac{(1\cdot8)+(3\cdot4)}{1+3}) \\ L=(\frac{2+42}{4},\frac{8+12}{4}) \\ L=(\frac{44}{4},\frac{20}{4}) \\ L=(11,5) \end{gathered}[/tex]Those are the coordinates of L.