a 3-liter balloon containing 4 grams of helium at room temperature 25 Celsius is placed in a freezer at -3 Celsius calculate the new volume assuming that the pressure inside the freezer is the same as outside the freezer

Given:
Initial volume:
[tex]v_1=3\text{ L}[/tex]Initial temperature:
[tex]\begin{gathered} T_1=25^{\circ}C \\ =25+273 \\ =298\text{ K} \end{gathered}[/tex]Final temperature:
[tex]\begin{gathered} T_2=-3^{\circ}C \\ =-3+273 \\ =270\text{ K} \end{gathered}[/tex]Mass of Helium gas:
[tex]m=4\text{ g}[/tex]Therefore, the number of moles of Helium gas is given as,
[tex]\begin{gathered} n=\frac{mass\text{ of helium gas}}{Molecular\text{ mass of helium gas}} \\ =\frac{4\text{ g}}{4\text{ g}} \\ =1\text{ mole} \end{gathered}[/tex]The ideal gas equation is given as,
[tex]PV=\text{nRT}[/tex]Here, P is the pressure and R is the universal gas constant.
Therefore,
[tex]\frac{P_1V_1}{P_2V_2}=\frac{nRT_1}{nRT_2}[/tex]As, the pressure is same. Therefore,
[tex]\frac{V_1}{V_2}=\frac{T_1}{T_2}[/tex]Therefore, the new volume is given as,
[tex]V_2=V_1\frac{T_2}{T_1}[/tex]Substituting all known values,
[tex]\begin{gathered} V_2=(3L)\times\frac{270\text{ K}}{298\text{ K}} \\ =2.718\text{ L} \end{gathered}[/tex]Therefore, the new volume of the gas is 2.718 L.