Draw a diagram to visualize the situation:
Notice that φ+θ=90°.
Assuming that the angle φ has a measure of 75°, then:
[tex]\begin{gathered} 75+\theta=90 \\ \Rightarrow\theta=90-75 \\ \Rightarrow\theta=15 \end{gathered}[/tex]Notice that the flagpole and its shadow are the legs of a right triangle. Recall the definition of the tangent of an angle in a right triangle:
[tex]\tan (A)=\frac{\text{Side opposite to A}}{\text{ Side adjacent to A}}[/tex]Then, in this case:
[tex]\tan (\theta)=\frac{h}{5.9m}[/tex]Substitute the value of θ into the equation and isolate h. Then, use a calculator to find the value of h:
[tex]\begin{gathered} h=5.9m\times\tan (15) \\ \Rightarrow h=5.9m\times0.26795\ldots \\ \Rightarrow h=1.5809\ldots m \end{gathered}[/tex]Therefore, to the nearest tenth:
[tex]h=1.6m[/tex]