To find the roots of the equation:
[tex]x^2+5=-5x[/tex]we can use the general formula:
[tex]x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}[/tex]First we need to write the equation in the form:
[tex]ax^2+bx+c=0[/tex]Then the equation given takes the form:
[tex]x^2+5x+5=0[/tex]now we identify that a=1, b=5 and c=5. Plugging this values into the general formual we have:
[tex]\begin{gathered} x=\frac{-5\pm\sqrt[]{5^2-4(1)(5)}}{2(1)} \\ =\frac{-5\pm\sqrt[]{25-20}}{2} \\ =\frac{-5\pm\sqrt[]{5}}{2} \end{gathered}[/tex]Hence the roots are:
[tex]\begin{gathered} x=\frac{-5+\sqrt[]{5}}{2} \\ \text{and} \\ x=\frac{-5-\sqrt[]{5}}{2} \end{gathered}[/tex]