Which of the following are vertical asymptotes of the function y=3cot(2x) - 4? Check all that apply.

Given the function:
[tex]y=3cot(2x)-4[/tex]Let's find the vertical asymptotes of the function.
To find the vertical asymptote, set 2x equal to zero:
[tex]2x=0[/tex]Solve for x.
To solve, divide both sides by 2:
[tex]\begin{gathered} \frac{2x}{2}=\frac{0}{2} \\ \\ x=0 \end{gathered}[/tex]Also, term inside the cotangent function, (2x), to π:
[tex]2x=\pi[/tex]Solve for x by dividing both sides by 2:
[tex]\begin{gathered} \frac{2x}{2}=\frac{\pi}{2} \\ \\ x=\frac{\pi}{2} \end{gathered}[/tex]Also, apply the trigonometric identity:
[tex]cot=\frac{cos}{sin}[/tex]Hence, the vertical asymptote will be where sin(2x) equals 0.
Now, input all given choices for x in sin(2x) and solve:
[tex]\begin{gathered} sin(2*\frac{\pi}{3})=0.86 \\ \\ sin(2*\frac{\pi}{2})=sin\pi=0 \\ \\ sin(2*2\pi)=sin4\pi=0 \\ \\ sin(\pi)=0 \end{gathered}[/tex]Therefore, the vertical asymptotes of the given function are:
[tex]\begin{gathered} x=\pm\frac{\pi}{2} \\ \\ x=2\pi \\ \\ x=\pi \end{gathered}[/tex]ANSWER:
B. x = ±π/2
C. x = 2π
D. x = π