The chemical equation:
[tex]2\text{HCl}\to H_2+Cl_2.[/tex]And the concentrations of hydrogen chloride:
[tex]M_{HCl}=\frac{2\text{ mol HCl}}{1\text{ L}}=2M_{HCl}.[/tex]We do an ICE chart:
[tex]K=\frac{x^2}{(2-2x)}=3.2\cdot10^{-34}[/tex]Doing the calculations in a software, we obtain that x is:
[tex]x=\pm2.5982\cdot10^{-17}.[/tex]Using the positive result, we obtain that:
[tex]\lbrack HCl\rbrack^2=2-2x=2-2(2.5982\cdot10^{-17})\text{.}[/tex][tex]\lbrack HCl\rbrack=\sqrt[]{2}\approx1.41\text{ M}[/tex][tex]\lbrack H_2\rbrack=\lbrack Cl_2\rbrack=x=2.5982\cdot10^{-17}.[/tex]These results is tellinig us that the direction of the equilibrium in the reaction goes like this:
[tex]K=\frac{\lbrack HCl\rbrack^2}{\lbrack H_2\rbrack\lbrack Cl_2\rbrack}=\frac{2}{(\text{2}.5982\cdot10^{-17})^2}\approx2.963\cdot10^{33}.[/tex]When K > 0, the direction goes to the right: to the products.