The decibel D is related by the formula:
[tex]D=10\log _{10}(\frac{l}{10^{-16}})[/tex]Now, let's find a simplified formula between the two rating D and I using properties of logarithms:
We are going to use the same formula but changing D by d and I by i, then subtract both formulas:
[tex]d=10\log _{10}(\frac{i}{10^{-16}})[/tex]D-d:
[tex]D-d=10\log _{10}(\frac{I}{10^{-16}})\text{ - 10}\log _{10}(\frac{i}{10^{-16}})[/tex]Factorize the number 10:
[tex]D-d=10\lbrack\log _{10}(\frac{I}{10^{-16}})-\log _{10}(\frac{i}{10^{-16}})\rbrack[/tex]Use the next rule of logarithms:
[tex]\log _a(\frac{m}{n})=\log _am-\log _an[/tex]So:
[tex]D-d=10\lbrack\log _{10}I-\log _{10}10^{-16}-\log _{10}i+\log _{10}10^{-16}\rbrack[/tex]Operate the common terms:
[tex]D-d=10\lbrack\log _{10}I-\log _{10}i\rbrack[/tex]Now, we are going to use the same rule presented before by changing the rest by a division:
[tex]D-d=10\log _{10}(\frac{I}{i})[/tex]With the before formula you can solve the difference between two ratings.
b)The sound intensity now quadruples, using the first given formula find the decibels louder:
So I = 4, replace this value and solve:
[tex]D=10\log _{10}(\frac{4}{10^{-16}})[/tex]We use the same property changing the division by a subtraction:
[tex]D=10\log _{10}4-10\log _{10}10^{-16}[/tex]Now, we are going to use the next property:
[tex]\log _{}a^b=b\cdot\log _{}a[/tex][tex]D=10\log _{10}4-(10\cdot-16\log _{10}10)[/tex]