We will have the following:
A:
B. We will have that in order to add the vectors, we will have:
So, the total sum of the vectors is:
So, the resultig vector is:
[tex]15i+15j[/tex]It's magnitude:
[tex]d=\sqrt[]{(15-0)^2+(15+0)^2}\Rightarrow d=15\sqrt[]{2}\Rightarrow d\approx21.2[/tex]So, the magnitude of the vector is 15sqrt(2) units, that is approximately 21.2 units.
We will have that its direction is:
[tex]\cos (\theta)=\frac{15}{15\sqrt[]{2}}\Rightarrow\theta=\cos ^{-1}(\frac{1}{\sqrt[]{2}})[/tex][tex]\Rightarrow\theta=45[/tex]So, its direction is 45° counterclockwise.
C. Using component vector methods, we will have:
[tex]V=(5i+7j)+(10i+8j)\Rightarrow V=15i+15j[/tex]The magnitude is:
[tex]|V|=\sqrt[]{(15i)^2+(15j)^2}\Rightarrow|V|=15\sqrt[]{2}[/tex]The direction is given by:
[tex]\cos (\theta)=\frac{a\cdot b}{|a|\cdot|b|}\Rightarrow\theta=\cos ^{-1}(\frac{a\cdot b}{|a|\cdot|b|})[/tex][tex]\Rightarrow\theta=\cos ^{-1}(\frac{1}{\sqrt[]{2}})\Rightarrow\theta=45[/tex]So, the direction is again 45°.