Question 5 of 6Which values are equivalent to the fraction below? Check all that apply.11.В.A.31 1c.33OF 3-3

The question is given to be:
[tex]\frac{3^5}{3^8}[/tex]Applying the law of indices:
[tex]\frac{a^m}{a^n}=a^{m-n}[/tex]Therefore, we have the expression to be:
[tex]\frac{3^5}{3^8}=3^{5-8}=3^{-3}[/tex]Recall the law of negative exponents:
[tex]a^{-m}=\frac{1}{a^m}[/tex]Therefore, the expression becomes:
[tex]3^{-3}=\frac{1}{3^3}=\frac{1}{3\times3\times3}=\frac{1}{27}[/tex]The expression is also equivalent to:
[tex](\frac{1}{3})^3[/tex]Since:
[tex](\frac{1}{3})^3=\frac{1^3}{3^3}=\frac{1}{27}[/tex]ANSWER
The correct options are OPTION C, OPTION E, and OPTION F.