Given:
Demand equation is
[tex]\text{ p}=-8x+600.[/tex]where p is the price(in dollars) and x is the quantity of the product.
Required:
We have to find the quantity x that is, the value of x for which revenue is maximized, the maximum revenue, and the price should the company charge to maximize the revenue.
Explanation:
The formula for the revenue function is
[tex]\begin{gathered} R(x)=x\times\text{ p} \\ \Rightarrow R(x)=x(-8x+600) \end{gathered}[/tex][tex]\Rightarrow R(x)=-8x^2+600x.[/tex]Comparing this equation with
[tex]y=ax^2+bx+c[/tex]we get
[tex]a=-8\text{ and }b=600.[/tex]The value of x for maximum revenue is
[tex]x=\frac{-b}{2a}=\frac{-600}{2(-8)}=\frac{-600}{-16}=37.5[/tex]So we take the value of x approximately 38 because it cannot be decimal or fraction.
Therefore, the maximum revenue is
[tex]\begin{gathered} -8\times(38)+600\times(38) \\ =-304+22800 \end{gathered}[/tex][tex]=22496[/tex]To maximize the revenue company should charge
[tex]\begin{gathered} \text{ p}=-8\times38+600 \\ \Rightarrow\text{ p}=-304+600 \end{gathered}[/tex][tex]\Rightarrow p=296[/tex]Final answer:
Hence the final answer is:
The quantity x maximizes revenue is
[tex]38.[/tex]The maximum revenue is
[tex]22496.[/tex]The price should the company charge to maximize revenue is
[tex]296.[/tex]