Respuesta :

Solution:

Given the circle with diameter AB as shown below

The circumference of the circle is expressed as

[tex]\begin{gathered} \text{Circumference = 2}\times\pi\times r\text{ ----- equation 1} \\ \text{where} \\ r\text{ is the radius of the circle.} \\ \text{The radius of the circle is } \\ r=\frac{\text{diameter of the circle}}{2} \\ \Rightarrow diameter\text{ =2r} \end{gathered}[/tex]

Thus, equation 1 becomes

[tex]\begin{gathered} \text{Circumference = }\pi\times\text{ diameter of the circle ---- equation 2} \\ (\sin ce\text{ diameter = 2}\times r) \end{gathered}[/tex]

Given that the diameter AB of the circle is 28 ft, the circumference of the circle will be evaluated as

[tex]\begin{gathered} \text{Circumference = }\pi\times\text{ diameter of the circle} \\ =3.14\times28 \\ \text{Circumference =}87.92\text{ ft} \end{gathered}[/tex]

Hence, the circumference of the circle is 87.92 ft.

Ver imagen JalanieU747088
RELAXING NOICE
Relax