Consider that the principal (P) invested at an annual rate of interest (R) for time (T) compounded as per the number of periods (n), gives an amount (A) of,
[tex]A=P(1+\frac{R}{n})^{nT}[/tex]The corresponding interest is given by,
[tex]\begin{gathered} CI=A-P \\ CI=P(1+\frac{R}{n})^{nT}-P \end{gathered}[/tex]According to the given problem,
[tex]\begin{gathered} CI=1500 \\ T=15 \\ R=3.45\text{ percent}=0.0345 \\ n=52 \end{gathered}[/tex]Substitute the values,
[tex]\begin{gathered} 1500=P(1+\frac{0.0345}{12})^{52\cdot15}+P \\ 1500=1.5126P+P \\ P=\frac{1500}{2.5126} \\ P\approx596.979 \end{gathered}[/tex]