The approximate area under the curve using the left-end points is 1.4236
Here; f(x) = 1/x^2 , [a,b] = [1,5] and n = 4
We start by calculating the width of each of the triangles on the interval
Mathematically, that would be;
[tex]\frac{b-a}{n}\text{ = }\frac{5-1}{4}\text{ = 1}[/tex]
Since there are 4 sub-intervals, there are 4 rectangles
So using the left end-points, we have;
[tex]1\text{ }\times\text{ f(1) + (1 }\times\text{ f(2)) + (1 }\times\text{ f(3)) + (1 }\times\text{ f(4))}[/tex]
where;
[tex]\begin{gathered} f(1)\text{ = }\frac{1}{1^2}\text{ = 1} \\ \\ f(2)\text{ = }\frac{1}{2^2}\text{ = 0.25} \\ \\ f(3)\text{ = }\frac{1}{3^2}=\text{ }\frac{1}{9}\text{ = 0.11111} \\ \\ f(4)\text{ = }\frac{1}{4^2}\text{ = }\frac{1}{16}\text{ = 0.0625} \end{gathered}[/tex]
So the approximate area under the curve will be;
[tex]1\text{ + 0.25 + 0.1111 + 0.0625 = 1.4236}[/tex]