Given expression:
[tex]2rs\text{ - 4rt - 6t + 3s}[/tex]Collect like terms:
[tex]=\text{ 2rs - 4rt - 6t + 3s}[/tex]Next, we bring the common terms:
[tex]=\text{ 2r(s - 2t) -3(2t - s)}[/tex]Re-writing the expression:
[tex]=\text{ -2r(2t - s) -3(2t -s)}[/tex]Since we have a common term on either side of the negative sign, we can write:
[tex]=\text{ (-2r -3)(2t-s)}[/tex]Answer:
[tex]=\text{ (-2r-3)(2t -s)}[/tex]Let us verify the answer:
[tex]\begin{gathered} (-2r\text{ -3)(2t-s)} \\ =-2r(2t\text{ -s) -3(2t -s)} \\ =\text{ -4rt + 2rs -6t + 3s} \end{gathered}[/tex]