Answer:
-12 and 14.
Explanation:
Given the quadratic equation: x² -2x -168=0
First, we factorize the expression on the left-hand side.
[tex]x^2-2x-168=(x\text{ )(x )}[/tex]Next, we multiply the first and last term,
[tex]-168\times x^2=-168x^2[/tex]We then write factors of -168.
[tex]\begin{gathered} -168=12\text{ and -14 } \\ -168=-12\text{ and 14} \\ \text{Add the factors:} \\ \text{12-14=-2} \\ -12+14=2 \end{gathered}[/tex]We pick the factors that add up to the middle term: -2
[tex]\begin{gathered} x^2-2x-168=0 \\ (x+12)(x-14)=0 \\ x+12=0\text{ or }x-14=0 \\ x=-12\text{ or x=14} \end{gathered}[/tex]The solutions to the quadratic equation are -12 and 14.