Given:
[tex]\begin{gathered} \text{ Radius of the Earth }=6.3781\times10^6 \\ \\ \text{ Radius of a Lacrosse Ball }=3\times10^{-2} \end{gathered}[/tex]Find-:
How many times greater is the radius of Earth is than the radius of a lacrosse ball
Explanation-:
Let x times grater then lacrosse ball
so,
[tex]\begin{gathered} 6.3781\times10^6=x\times3\times10^{-2} \\ \end{gathered}[/tex][tex]\begin{gathered} x=\frac{6.3781\times10^6}{3\times10^{-2}} \\ \\ x=\frac{6.3781\times10^6\times10^2}{3} \\ \\ x=\frac{6.3781\times10^8}{3} \\ \\ x=2.126\times10^8 \end{gathered}[/tex]So the radius of Earth is 2.16 10 to the power 8 times greater than then radius of a lacrosse ball