Respuesta :

In order to determine the area in the interval [-3, -3] of the function enclosed by:

[tex]f(x)=\begin{cases}x^2+2x+2 \\ 3x-4\end{cases}[/tex]

When the first term is for x<2 and the second when x>=2.

We proceed as follows:

[tex]\int ^3_{-3}(x^2+2x+2)-(3x-4)\rbrack dx[/tex][tex]\Rightarrow\int ^3_{-3}(x^2-x+6)dx=\frac{x^3}{3}-\frac{x^2}{2}+6x|^3_{-3}=54[/tex]

ACCESS MORE
EDU ACCESS