We are given that "s" is directly proportional to "v + 3". This means that the following relationship is given:
[tex]m=\frac{s}{v+3}[/tex]Where "m" is the proportionality constant. To determine the value of "m" we use the fact that when s = 8 then v = 1, therefore:
[tex]m=\frac{8}{1+3}[/tex]Solving the addition:
[tex]m=\frac{8}{4}[/tex]Now, we solve the quotient:
[tex]m=2[/tex]Therefore, the value of "m" is 2.
[tex]2=\frac{s}{v+3}[/tex]Now, we substitute the value v = -2:
[tex]2=\frac{s}{-1+3}[/tex]Solving the operation:
[tex]\begin{gathered} 2=\frac{s}{1} \\ \\ 2=s \end{gathered}[/tex]Therefore, the value of "s" is 2.