Let's evaluate the expression by applying the Substitution Method.
Let's substitute x = 3 and y = 6 to the expression:
[tex]\text{ }\frac{3y\text{ - 6}}{x}[/tex]We get,
[tex]\text{ }\frac{3y\text{ - 6}}{x}\text{ = }\frac{3(5)\text{ - 6}}{3}[/tex][tex]\text{ = }\frac{15\text{ - 6}}{3}\text{ = }\frac{9}{3}[/tex][tex]\text{ = }3[/tex]Therefore, the expression (3y - 6)/x at x = 3 and y = 5 will give you a value of 3.