We will investigate the application of trignometric ratios.
There are three trigonometric ratios that are applied with respect to any angle in a right angle triangle as follows:
[tex]\begin{gathered} \sin \text{ ( }\theta\text{ ) = }\frac{P}{H} \\ \\ \cos \text{ ( }\theta\text{ ) = }\frac{B}{H} \\ \\ \tan \text{ ( }\theta\text{ ) = }\frac{P}{B} \end{gathered}[/tex]Where,
[tex]\begin{gathered} \theta\colon\text{ Any of the chosen angle of a right angle traingle except ( 90 degrees )} \\ P\colon\text{ Side opposite to the chosen angle} \\ B\colon\text{ Side adjacent/base to chosen angle} \\ H\colon\text{ Hypotenuse} \end{gathered}[/tex]We have two options to select our angle theta from:
[tex]\theta=\text{ 60 OR }\theta\text{ = 30}[/tex]We can choose either of the above angles. We will choose ( 30 degrees ); hence:
[tex]\begin{gathered} \theta\text{ = 30} \\ P\text{ = }\frac{1}{2}\text{ , B = y , H = x} \end{gathered}[/tex]We will use the trigonmetric ratios and evaluate each of the variables ( x and y ).
To determine ( x ) we can use the sine ratio as we have ( P ) and ( theta ) we can evaluate the hypotenuse as follows:
[tex]\begin{gathered} \sin (30)\text{ = }\frac{\frac{1}{2}}{x} \\ \\ x\text{ = }\frac{\frac{1}{2}}{\frac{1}{2}} \\ \\ x\text{ = 1}\ldots\text{Answer} \end{gathered}[/tex]To determine ( y ) we can use the tangent ratio as we have ( P ) and ( theta ) we can evaluate the Adjacent/base side as follows:
[tex]\begin{gathered} \tan (30)\text{ = }\frac{\frac{1}{2}}{y} \\ \\ y\text{ = }\frac{\frac{1}{2}}{\frac{\sqrt[]{3}}{3}} \\ \\ y\text{ = }\frac{1}{2\cdot\sqrt[]{3}}\ldots\text{Answer} \end{gathered}[/tex]