Hello, May I please get some assistance with this homework question? I posted an image below. Parts A and B are already completed. Q2 (Part C.)

SOLUTION
The given functions are
[tex]f(x)=4x+3,g(x)=x^2[/tex]Recall the rule of composite function
[tex]f\circ g=f(g(x))[/tex]a. f o g
This can be rewritten as
[tex]f\circ g=f(g(x))[/tex]Substitute the value of g(x) into the expression
This gievs
[tex]f(g(x))=f(x^2)[/tex]Substitute x² for x into the expression
[tex]f(x^2)=4x^2+3[/tex]Therefore fog is
[tex]4x^2+3[/tex]The domain of fog is all real numbers
Following the same procedure it follows
b.
[tex]\begin{gathered} \text{gof}=g(f(x)) \\ =g(4x+3) \\ =(4x+3)^2 \end{gathered}[/tex]The domain of gof is all real numbers
c. fof
[tex]\begin{gathered} f\circ f=f(f(x)) \\ =f(4x+3) \\ =4(4x+3)+3 \\ =16x+12+3 \\ =16x+15 \end{gathered}[/tex]The domain of fof is all real numbers
d. gog
[tex]\begin{gathered} g\circ g=g(g(x)) \\ =g(x^2) \\ =(x^2)^2 \\ =x^4 \end{gathered}[/tex]The domain of gog is all real numbers