Answer:
• m∠2 = 90°
,• m∠3 = 73°
,• m∠4 = 17°
,• m∠5 = 90°
,• m∠6 = 73°
Explanation:
Angle 2 is a right angle, therefore:
• m∠2 = 90°
Given that m∠1 = 17°:
[tex]m\angle1+m\angle2+m\angle3=180\degree\text{ (Angle on a straight line)}[/tex]Substitute the given values:
[tex]\begin{gathered} 17\degree+90\degree+m\angle3=180\degree \\ 107\degree+m\angle3=180\degree \\ m\angle3=180\degree-107\degree \\ m\angle3=73\degree \end{gathered}[/tex]• m∠3 = 73°
Angles 1 and 4 are vertically opposite angles, therefore:
[tex]\begin{gathered} m\angle4=m\angle1 \\ m\angle4=17\degree \end{gathered}[/tex]Angles 2 and 5 are vertically opposite angles, therefore:
[tex]\begin{gathered} m\angle5=m\angle2 \\ m\angle5=90\degree \end{gathered}[/tex]Angles 3 and 6 are vertically opposite angles, therefore:
[tex]\begin{gathered} m\angle6=m\angle3 \\ m\angle6=73\degree \end{gathered}[/tex]