what would the answer be and what step do i have to take to find true answer

Given:
There are given the equation:
[tex](1-3x)^{\frac{1}{2}}-1=x[/tex]Explanation:
According to the question:
We need to find the value of x.
So,
From the given equation:
[tex](1-3x)^{\frac{1}{2}}-1=x[/tex]Then,
Add 1 to both sides of the equation:
So
[tex]\begin{gathered} (1-3x)^{\frac{1}{2}}-1=x \\ (1-3x)^{\frac{1}{2}}=x+1 \end{gathered}[/tex]Then,
Square both sides of the above equation:
[tex]\begin{gathered} (1-3x)^{\frac{1}{2}}=x+1 \\ (1-3x)=(x+1)^2 \\ (1-3x)=x^2+2x+1 \end{gathered}[/tex]Then,
[tex]\begin{gathered} 1-3x-x^2-2x-1=0 \\ -x^2-5x=0 \\ -x(x+5)=0 \\ x(x+5)=0 \end{gathered}[/tex]Then,
[tex]\begin{gathered} x(x+5)=0 \\ x=0,x=-5 \end{gathered}[/tex]Final answer:
Hence, the correct option is C.