10n31y
contestada

The equation [tex]f(x)=7a^{2+x}-b[/tex] has an x-intercept equivalent to


A) [tex]x=\frac{logb-log7}{loga}-2[/tex]

B) [tex]x=7a^{2}-b[/tex]

C) [tex]x=\frac{y+b}{7a^{2}}[/tex]

D) [tex]x=0[/tex]

I have the answer key so I know the answer. I just don't know how they got to the answer so please show your work.

Respuesta :

Answer:

[tex]\textsf{A)} \quad x=\dfrac{\log b - \log 7}{ \log a}-2[/tex]

Step-by-step explanation:

Given function:

[tex]f(x)=7a^{2+x}-b[/tex]

The x-intercepts occur when the function equals zero.

[tex]\implies 7a^{2+x}-b=0[/tex]

Add b to both sides:

[tex]\implies 7a^{2+x}=b[/tex]

Divide both sides by 7:

[tex]\implies a^{2+x}=\dfrac{b}{7}[/tex]

Take logs of both sides of the equation:

[tex]\implies \log \left(a^{2+x}\right)= \log \left(\dfrac{b}{7}\right)[/tex]

[tex]\textsf{Apply the Power log law}: \quad \log_ax^n=n\log_ax[/tex]

[tex]\implies (2+x)\log a= \log \left(\dfrac{b}{7}\right)[/tex]

[tex]\textsf{Apply the Quotient log law}: \quad \log_a\frac{x}{y}=\log_ax - \log_ay[/tex]

[tex]\implies (2+x)\log a= \log b-\log 7[/tex]

Divide both sides by log a:

[tex]\implies 2+x=\dfrac{\log b - \log 7}{ \log a}[/tex]

Subtract 2 from both sides:

[tex]\implies x=\dfrac{\log b - \log 7}{ \log a}-2[/tex]

RELAXING NOICE
Relax