Answer:
[tex]\textsf{A)} \quad x=\dfrac{\log b - \log 7}{ \log a}-2[/tex]
Step-by-step explanation:
Given function:
[tex]f(x)=7a^{2+x}-b[/tex]
The x-intercepts occur when the function equals zero.
[tex]\implies 7a^{2+x}-b=0[/tex]
Add b to both sides:
[tex]\implies 7a^{2+x}=b[/tex]
Divide both sides by 7:
[tex]\implies a^{2+x}=\dfrac{b}{7}[/tex]
Take logs of both sides of the equation:
[tex]\implies \log \left(a^{2+x}\right)= \log \left(\dfrac{b}{7}\right)[/tex]
[tex]\textsf{Apply the Power log law}: \quad \log_ax^n=n\log_ax[/tex]
[tex]\implies (2+x)\log a= \log \left(\dfrac{b}{7}\right)[/tex]
[tex]\textsf{Apply the Quotient log law}: \quad \log_a\frac{x}{y}=\log_ax - \log_ay[/tex]
[tex]\implies (2+x)\log a= \log b-\log 7[/tex]
Divide both sides by log a:
[tex]\implies 2+x=\dfrac{\log b - \log 7}{ \log a}[/tex]
Subtract 2 from both sides:
[tex]\implies x=\dfrac{\log b - \log 7}{ \log a}-2[/tex]