Given:
The mass of the car is,
[tex]m=1325\text{ kg}[/tex]The radius of the circular path is,
[tex]r=16.18\text{ m}[/tex]The coefficient of friction between the tires and the road is,
[tex]\mu=0.826[/tex]The acceleration due to gravity is,
[tex]g=10\text{ m/s}^2[/tex]To find:
How fast (in m/s) can the car go without skidding off the turn
Explanation:
The frictional force balances the centripetal force.
The frictional force is,
[tex]f=\mu mg[/tex]The centripetal force is,
[tex]F=\frac{mv^2}{r}[/tex]Here, v is the speed of the car without skidding.
We can write,
[tex]\begin{gathered} \frac{mv^2}{r}=\mu mg \\ v=\sqrt{\mu gr} \end{gathered}[/tex]Substituting the values we get,
[tex]\begin{gathered} v=\sqrt{0.826\times10\times16.18} \\ v=11.6\text{ m/s} \end{gathered}[/tex]Hence, the required speed is 11.6 m/s.