the general equation of the lines is
[tex]y=mx+b[/tex]where m is the slope and b the y-intercept
• calculating the slope
[tex]\begin{gathered} m=\frac{y2-y1}{x2-x1} \\ \end{gathered}[/tex]where (x2,y2) is a right point from (x1,y1)
on this case (x2,y2) is (2,8) and (x1,y1) the other point
replacing
[tex]\begin{gathered} m=\frac{8-(-1)}{2-(-4)} \\ \\ m=\frac{9}{6}=\frac{3}{2} \end{gathered}[/tex]the slope is 3/2
• Calculating b
replace m and a point to solve b from the general equation. I will use the point (2,8)
[tex]\begin{gathered} (8)=(\frac{3}{2})(2)+b \\ 8=3+b \\ b=8-3 \\ b=5 \end{gathered}[/tex]• rewriting the equation
replace m and b on the general equation
[tex]y=\frac{3}{2}x+5[/tex]