Simplify the expression. e 2 In 4 16 e2 02 O 16

To simplify this expression we need to remember the following properties:
[tex](b^x^{})^y=b^{xy}^{}[/tex]and
[tex]e^{lnx}=x^{}[/tex]Then, in our case
[tex]e^{-2ln4}=(e^{ln4})^{-2}^{}[/tex][tex]\begin{gathered} =(4)^{-2} \\ =\frac{1}{4^2} \\ =\frac{1}{16} \end{gathered}[/tex]Therefore
[tex]e^{-2ln4}=\frac{1}{16}^{}[/tex]