Find the exact value of x in the figure. 30° 36 450

The triangle is,
Using trigonometric equations for right triangle ACB,
[tex]\begin{gathered} \cos 30^{\circ}=\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \cos 30^{\circ}=\frac{y}{36} \\ 36\times\cos 30^{\circ}=y \\ 36\times\frac{\sqrt[]{3}}{2}=y \\ 18\sqrt[]{3}=y \end{gathered}[/tex]Using trigonometric equations for right triangle ACD,
[tex]\begin{gathered} \tan 45^{\circ}=\frac{\text{opposite side}}{adjacent\text{ side}} \\ \tan 45^{\circ}=\frac{y}{x} \\ x=\frac{y}{\tan45^{\circ}} \\ x=\frac{18\sqrt[]{3}}{1} \\ x=18\sqrt[]{3} \\ \text{Therefore, the value of x is }18\sqrt[]{3} \end{gathered}[/tex]