Respuesta :

We will solve as follows:

[tex](x+3y)^4=(x+3y)^2\cdot(x+3y)^2[/tex][tex]=(x^2+6xy+9y^2)\cdot(x^2+6xy+9y^2)[/tex][tex]=x^2(x^2+6xy+9y^2)+6xy(x^2+6xy+9y^2)+9y^2(x^2+6xy+9y^2)[/tex][tex]=(x^4+6x^3y+9x^2y^2)+(6x^3y+36x^2y^2+54xy^3)+(9x^2y^2+54xy^3+81y^4)[/tex][tex]=x^4+(6x^3y+6x^3y)+(9x^2y^2+36x^2y^2+9x^2y^2)+(54xy^3+54xy^3)+81y^4[/tex][tex]=x^4+12x^3y+54x^2y^2+108xy^3+81y^4[/tex]

So, the expansion for the binomial is:

[tex](x+3y)^4=x^4+12x^3y+54x^2y^2+108xy^3+81y^4[/tex]

RELAXING NOICE
Relax