given the value of a and b in each set:
Set 1 :
[tex]\begin{gathered} a=-\frac{1}{2},b=6 \\ \\ \end{gathered}[/tex]We will find the value of the following :
[tex]\begin{gathered} -a=-1\cdot-\frac{1}{2}=\frac{1}{2} \\ \\ -4b=-4\cdot6=-24 \\ \\ -a+b=\frac{1}{2}+6=6\frac{1}{2} \\ \\ a\div-b=\frac{1}{2}\div-6=\frac{1}{2}\cdot-\frac{1}{6}=-\frac{1}{12} \\ \\ a^2=(-\frac{1}{2})^2=\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4} \\ \\ b^3=6^3=216 \end{gathered}[/tex]The expression with the largest value = b^3 = 216
The expression with the smallest value = -4b = -24
the expression which is closest to zero = a ÷ -b