We are given the following system of linear equations
[tex]\begin{gathered} -5x+2y+6z=-2 \\ x+3y+4z=-3 \\ 6x+y-2z=-1 \end{gathered}[/tex]
Let us solve the given system of equations.
First, let us find the determinant.
The determinant is given by
[tex]\begin{gathered} D=\begin{bmatrix}{-5} & 2 & {6} \\ {1} & {3} & {4} \\ {6} & {1} & {-2}\end{bmatrix}=-5\begin{bmatrix}{3} & {4} \\ 1 & {-2}\end{bmatrix}-2\begin{bmatrix}{1} & {4} \\ {6} & {-2}\end{bmatrix}+6\begin{bmatrix}{1} & {3} \\ {6} & {1}\end{bmatrix} \\ D=\begin{bmatrix}{-5} & 2 & {6} \\ {1} & {3} & {4} \\ {6} & {1} & {-2}\end{bmatrix}=-5(3\cdot-2-4\cdot1)-2(1\cdot-2-4\cdot6)+6(1\cdot1-3\cdot6) \\ D=\begin{bmatrix}{-5} & 2 & {6} \\ {1} & {3} & {4} \\ {6} & {1} & {-2}\end{bmatrix}=-5(-6-4)-2(-2-24)+6(1-18) \\ D=\begin{bmatrix}{-5} & 2 & {6} \\ {1} & {3} & {4} \\ {6} & {1} & {-2}\end{bmatrix}=-5(-10)-2(-26)+6(-17) \\ D=\begin{bmatrix}{-5} & 2 & {6} \\ {1} & {3} & {4} \\ {6} & {1} & {-2}\end{bmatrix}=50+52-102 \\ D=\begin{bmatrix}{-5} & 2 & {6} \\ {1} & {3} & {4} \\ {6} & {1} & {-2}\end{bmatrix}=102-102 \\ D=\begin{bmatrix}{-5} & 2 & {6} \\ {1} & {3} & {4} \\ {6} & {1} & {-2}\end{bmatrix}=0 \end{gathered}[/tex]
As you can see, the determinant of the matrix is 0
This means that the given system of equations has no solution.