Use the formula for the compounding of interest
[tex]A=P(1+\frac{r}{n})^{n\cdot t}[/tex]since the compounding is annually, n=1 which reduces the formula to
[tex]A=p(1+r)^t[/tex]use values for
A=900
p=610
r=0.041
solve the equation for t
[tex]900=610\cdot(1+0.041)^t[/tex][tex]\frac{900}{610}=(1.041)^t[/tex][tex]\ln (\frac{900}{610})=\ln (1.041)^t[/tex]apply the log properties
[tex]\ln (\frac{900}{610})=t\cdot\ln (1.041)[/tex]solve for t
[tex]\begin{gathered} t=\frac{\ln (\frac{900}{610})}{\ln (1.041)} \\ t\approx9.68 \end{gathered}[/tex]It would take about 10 years to reach 900 in the account