Graph the following function by hand and support your sketch with a calculator graph. Give the domain, range, and the equation of the asymptote. Determine if f is increasing or decreasing on its domain.f(x)=10^x

Respuesta :

Answer:

[tex]\text{Domain}\colon x=(-\infty,\infty)[/tex]

[tex]\text{Range}\colon(0,\infty)[/tex]

[tex]\begin{gathered} f(x)=0 \\ 10^x=0 \end{gathered}[/tex]

Explanation:

Given the equation;

[tex]f(x)=10^x[/tex]

Graphing the function, let us find the value of f(x) at the various values of x;

[tex]\begin{gathered} at\text{ x=0;} \\ f(0)=10^0=1 \\ at\text{ x=1;} \\ f(1)=10^1=10 \\ at\text{ x=2;} \\ f(2)=10^2=100 \\ at\text{ x=3;} \\ f(3)=10^3=1000 \end{gathered}[/tex]

So, we have the points below on the graph;

[tex](0,1),(1,10),(2,100),(3,1000)[/tex]

Graphing those points will give the graph of the function;

The domain of the function is the set of value of possible input (x) for the function;

[tex]\text{Domain}\colon x=(-\infty,\infty)[/tex]

The Range of the function is is the set of value of possible output f(x) of the function;

[tex]\text{Range}\colon(0,\infty)[/tex]

The function has an horizontal asymptote at;

[tex]\begin{gathered} f(x)=0 \\ 10^x=0 \end{gathered}[/tex]

From the graph we can observe that the function increases as the value of x increases.

So, f(x) increases on its domain

Ver imagen AubrelleI672471
RELAXING NOICE
Relax