Answer:
[tex]\text{Domain}\colon x=(-\infty,\infty)[/tex][tex]\text{Range}\colon(0,\infty)[/tex][tex]\begin{gathered} f(x)=0 \\ 10^x=0 \end{gathered}[/tex]
Explanation:
Given the equation;
[tex]f(x)=10^x[/tex]Graphing the function, let us find the value of f(x) at the various values of x;
[tex]\begin{gathered} at\text{ x=0;} \\ f(0)=10^0=1 \\ at\text{ x=1;} \\ f(1)=10^1=10 \\ at\text{ x=2;} \\ f(2)=10^2=100 \\ at\text{ x=3;} \\ f(3)=10^3=1000 \end{gathered}[/tex]So, we have the points below on the graph;
[tex](0,1),(1,10),(2,100),(3,1000)[/tex]Graphing those points will give the graph of the function;
The domain of the function is the set of value of possible input (x) for the function;
[tex]\text{Domain}\colon x=(-\infty,\infty)[/tex]The Range of the function is is the set of value of possible output f(x) of the function;
[tex]\text{Range}\colon(0,\infty)[/tex]The function has an horizontal asymptote at;
[tex]\begin{gathered} f(x)=0 \\ 10^x=0 \end{gathered}[/tex]From the graph we can observe that the function increases as the value of x increases.
So, f(x) increases on its domain